
Combining Static and Dynamic Optimizations Using
Closed-Form Solutions

Daniel Lundén∗
KTH Royal Institute of Technology

Sweden

David Broman∗
KTH Royal Institute of Technology

Sweden

Lawrence M. Murray∗
Uppsala University

Sweden

Abstract
It is sometimes possible to optimize probabilistic programs,
either statically or dynamically. We introduce two examples
demonstrating the need for both approaches. Furthermore,
we identify a set of challenges related to the two approaches,
and more importantly, how to combine them.

1 Introduction
In probabilistic programming [2, 3, 6, 8], certain programs
have substructures that can be optimized using closed-form
solutions. These optimizations can be performed either stati-
cally, before execution of a probabilistic program, or dynam-
ically, during execution of a probabilistic program. In this
extended abstract, we discuss the need for both of these ap-
proaches. We also identify more general challenges related to
combining static and dynamic optimizations for probabilistic
programs.

The closed-form solutions are as follows: for two random
variables X and Y with distributions p (x ) and p (y |x ), we can
find both the marginal distribution p (y) =

∫
X p (y |x )p (x )dx

and the conditional distribution p (x |y) (given that y is ob-
served) in closed-form. This is, for instance, the case when
p (x ) is a conjugate prior for the likelihood functionp (y |x ). As
a consequence, we can analytically condition some unknown
random variables in our program on the observed random
variables. We have previously developed a systematic and
correct method for doing this dynamically for importance
sampling methods, including Sequential Monte Carlo (SMC)
methods [1], called delayed sampling [4, 5]. Using delayed
sampling for SMC gives potentially increased effective sam-
ple sizes and reduced variance for estimators based on the
generated samples.

2 The need for dynamic optimization
If a probabilistic program simply represents a probabilistic
graphical model, we can identify the previously introduced
closed-form solutions before executing the program. As a
consequence, it is easy to encode (and possibly even further
optimize) the operations performed by delayed sampling in
the program statically.
One of the motivations of probabilistic programming is,

however, to add expressiveness compared to probabilistic
graphical models, which are inherently static. This increased
∗Financially supported by the Swedish Foundation for Strategic Research
(ASSEMBLE RIT15-0012).

(defquery dynamic

(let [data [0 -1.1 2.4 1.2 -0.1 -1.4 -1.9]

x (sample (normal 0 1))

mix (fn [anc]

(if (sample (flip 0.5))

(normal anc 1)

(normal 0 (+ 1 (abs anc )))))

foo (fn foo [root depth]

(let [left (mix root)

right (mix root)]

(if (= depth 1)

[left right]

(concat (foo (sample left)

(- depth 1))

(foo (sample right)

(- depth 1))))))

leaves (foo x 3)]

(map (fn [dist obs] (observe dist obs))

leaves data) x))

x
N N

N N N N

N N N N N N N N

Figure 1. A program (written in Anglican [8]) in which the
dependencies between normal random variables may, or
may not, have a closed-form solution. This is decided during
execution by flipping a coin. The function flip returns either
true or false, with 50% probability.

expressiveness is due to two features of probabilistic pro-
gramming: recursion (possibly infinite number of random
variables) and stochastic branching (random variables af-
fect control flow). These additions make it possible for a
probabilistic program to give different probabilistic graphical
models for each simulation of the program. Here, different
means that there can be a different number of random vari-
ables, different distributions, different types of relationships
between random variables, and even different topologies for
the graphical models generated when simulating the pro-
gram. Consequently, there is possibly an infinite number of
graphical models for a single probabilistic program. As such,
it sometimes becomes infeasible to exploit our closed-form
solutions statically.

As an example, consider the program with corresponding
graphical model in Figure 1. For each node in the graph
(not including the root node), there is a 50% chance that



a closed-form solution1 between it and its ancestor exists.
Attempting to exploit these closed-form solutions statically
entails considering 214 possible graphical models, all of which
must be handled differently (see [4, 5]). The combinatorial
difficulties become even more apparent if the topology of the
graph is also allowed to change between simulations. This
demonstrates that a dynamic approach operating during
execution (such as delayed sampling) is essential for this
particular optimization in probabilistic programs.

3 The need for static optimization
As already mentioned, if the probabilistic program simply
represents a graphical model, we can perform our optimiza-
tions statically. If we instead perform the optimizations dy-
namically, there would be a certain overhead in maintaining
algorithm data structures. Possibly, we would also repeat
calculations in each run of the program.

Figure 2a demonstrates a probabilistic program in the form
of a linear-Gaussian state-space model. In the program, no
random variables affect control flow, making this a straight-
forward graphical model. Therefore, we can, and should,
optimize the program statically. We do this by repeated ap-
plication of the closed-form solutions between the normal
variables (i.e., we apply a Kalman filter). The result is shown
in Figure 2b. The very last observation y[5] does not have
a closed-form solution with its ancestor, and can therefore
not be optimized. Using a dynamic approach such as delayed
sampling would, for this program, lead to both unnecessary
overhead and repeated marginalization and conditioning
calculations.

4 Related work
While there is much work in both exact and approximate
inference for probabilistic programs, there is not much work
presented for optimization of probabilistic programs. Hakaru
[6] is a probabilistic programming language that uses sym-
bolic computation in Maple for static optimization of pro-
grams. Another language is R2 [7], which statically optimizes
programs by propagating observations backwards.

5 Challenges and conclusion
We have introduced two examples showing the need for both
static and dynamic optimizations. An important question
remains: how can we decide when to use which approach?
Remember that dynamic optimization is needed when the
graphical models produced by a single program can change
significantly between simulations. This introduces a future
challenge in probabilistic programming—what do we mean
by significant change between program runs? Can we define

1We can find both the marginal and conditional distributions described in
Section 1 if we have a normally distributed random variable as the mean of
another normally distributed variable.

(defquery static

(let [data [0.4 0.9 -0.1 -1.3 0.2 2.1]

x (sample (normal 0 1))]

(observe (normal x 1) (first data))

(loop [x x, data (rest data)]

(if (seq data)

(let [x (sample (normal x 1))]

(observe (if (> (count data) 1)

(normal x 1)

(normal 0 (+ 1 (abs x))))

(first data))

(recur x (rest data ))) x))))

x[0] x[1] x[2] x[3] x[4] x[5]

y[0] y[1] y[2] y[3] y[4] y[5]

(a)
(defquery static-opt

(let [data [2.1]

x (sample (normal -0.157 (sqrt 1.617)))]

(observe (normal 0 (+ 1 (abs x))) (first data)) x))

(b)

Figure 2. Figure (a) shows a program (written in Angli-
can [8]) with neither stochastic branching nor recursion,
and the corresponding graphical model. The dotted edge for
the very last observation denotes the lack of a closed-form
solution. Figure (b) shows an optimized version of the same
program, where the observations o[0] to o[4] have been
absorbed into the distribution for x[5], and where x[0] to
x[4] have been marginalized out.

some measure of this property that we can subsequently use
to decide between static and dynamic optimizations?

Furthermore, there can also be cases when a combination
of both approaches is appropriate. Simple parts of a program
can be statically optimized, while other, more complicated
parts, must be optimized dynamically. To automatically sep-
arate these two cases within one program is a challenging
task that deserves further exploration. Also, is there such a
thing as an optimal way of combining static and dynamic
optimizations? Can we define this formally?
The two approaches have separate challenges related to

them as well. A dynamic approach for optimization requires
a proof of correctness for an algorithm that operates during
execution of the program. A static approach instead involves
program transformations, and requires that the transformed
program is equivalent to the original program. This also
raises the important issue of establishing equivalence be-
tween two probabilistic programs.

In summary, we argue that there is an important need for
optimizing probabilistic programs using closed-form solu-
tions. In particular, we contend that this should be done by
combining static and dynamic optimization techniques.



References
[1] Arnaud Doucet, Nando de Freitas, and Neil Gordon. 2001. Sequential

Monte Carlo Methods in Practice. Springer New York.
[2] Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Keith

Bonawitz, and Joshua B. Tenenbaum. 2008. Church: A language for
generative models. In In UAI. 220–229.

[3] Noah D Goodman and Andreas Stuhlmüller. 2014. The Design and
Implementation of Probabilistic Programming Languages. http://dippl.
org. (2014). Accessed: 2017-10-16.

[4] Daniel Lundén. 2017. Delayed sampling in the probabilistic programming
language Anglican. Master’s thesis. KTH Royal Institute of Technology.

[5] Lawrence M. Murray, Daniel Lundén, Jan Kudlicka, David Broman,
and Thomas B. Schön. 2017. Delayed Sampling and Automatic Rao-
Blackwellization of Probabilistic Programs. (2017). arXiv:1708.07787

[6] Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh Shan,
and Robert Zinkov. 2016. Probabilistic inference by program transfor-
mation in Hakaru (system description). In International Symposium
on Functional and Logic Programming - 13th International Symposium,
FLOPS 2016, Kochi, Japan, March 4-6, 2016, Proceedings. Springer, 62–79.

[7] Aditya V. Nori, Chung-Kil Hur, Sriram K. Rajamani, and Selva Samuel.
2014. R2: An Efficient MCMC Sampler for Probabilistic Programs. In Pro-
ceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence
(AAAI’14). AAAI Press, 2476–2482.

[8] FrankWood, JanWillem van deMeent, and VikashMansinghka. 2014. A
New Approach to Probabilistic Programming Inference. In Proceedings
of the 17th International conference on Artificial Intelligence and Statistics.
1024–1032.

http://dippl.org
http://dippl.org
http://arxiv.org/abs/1708.07787

	Abstract
	1 Introduction
	2 The need for dynamic optimization
	3 The need for static optimization
	4 Related work
	5 Challenges and conclusion
	References

