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We propose an amortized inference strategy for proba-
bilistic programs, one that learns from past inferences
to speed up the future inferences. Our proposed infer-
ence strategy is to train neural guidance programs via
a minimax game, with the probabilistic program as a
correlation device. From a game-theoretical vantage
point, the role of a correlation device is to enforce bet-
ter outcomes by sharing information between players.
The shared information, in our case, is the execution
trace, which gets used for computation of payoffs in
the minimax game.

1 Probabilistic Programming Setup

One approach to Probabilistic programming languages
(PPL) is through “many world” execution trace tree.
Upon execution, a probabilistic program encounters
a series elementary random primitives (ERP). From
the many world view, different execution traces will
be taken depending on the return value of each call to
these ERP. Let’s consider a generative model p(x,y)
with latent variables x and observation data y. Prior
distribution p(x) can be interpreted as distribution of
the execution traces of unconditioned programs F(.).
Various execution of the program yield in various sam-
ples from the prior. Similarly, the posterior distribution
p(x|y) can be considered as F(y). By tracking down
the execution trace, p(x) can be decomposed as a prod-
uct of conditionals p(xi|x<i), one for each ERP on
the execution trace to xi. x<i indicates that it could
potentially be depending on any or all previous ERPs.
Therefore PPL expresses the generative model as:

p(y,x) = p(y|x)
∏
i

p(xi|x<i) (1)

2 Amortized Inference using Neural
Guidance Programs

Any arbitrary programming languages can be turned
into probabilistic programming languages with various
Markov Chain (MC) inference strategies [1]. However,
MC inference strategies are computationally expensive.

More importantly, with the arrival of a new observation
y′, the PPL’s inference engine has to recompute p(x|y′)
from scratch. Amortized inference addresses this prob-
lem by learning from past inferences to speed up the
future inferences. The amortized inference strategy in
[2] is to learn a neural guidance program q upfront so
that at inference time, sampling from q is both fast
and accurate. It is an approximation of p(x|y) using
side neural computations:

q(x|y;φ) =
∏
i

q(xi;Di(y,x<i;φ)) (2)

where Di is a neural network. Their proposed guidance
program q extends the mean field family but is still
limited by its fully-factored representational format. In
our proposed setup, the guidance program G(θ) is a
neural network itself that gets trained by playing a
minimax game against D(φ). Moreover, the proposed
amortized inference in [2] affects the learning dynamic
of the guidance program via the generated data, in a
passive way. In our proposed approach, PPL’s inference
engine can interact with the guidance program G(θ) in
an interactive way, as is explained in the next section.
Aside from the benefits of amortized inference, it can
lead to more efficient MC inferences.

3 Amortized inference using Deep
Adversarial Compilation

Generative adversarial networks (GAN) [3] trade com-
plexities of sampling algorithms with the complexities
of finding Nash equilibrium in minimax games. The
players of the game are deep neural networks known
as generator 1 and adversary. The adversary tries to
maximize its payoff defined as negative Jensen-Shannon
(JD) distance, whereas generator objects to it. The
strategies are parameters of these neural networks that
get updated with stochastic gradient descent, at ev-
ery stage of the game. Similarly, we cast the learning
problem of the guidance program as a game theoretical
problem. As a result, instead of solving variational

1Not to be confused with the generative model of PPL
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objective using Eq. 2, as in done in [2], we formulate
a minimax search for guidance program. Guidance
program G(y,x<i; θ) plays the role of the generator
that generates xi given the execution trace x<i. The
neural architecture of G can be selected from Recursive
Neural Networks (RNN) variants such as LSTM [6],
GRU [7], etc. The adversary D then evaluates the
execution trace choices made by G. D can be a simple
feedforward neural network.

In our proposed game theoretical framework, the proba-
bilistic program engine recommends an execution trace
x<i that gets used by G,D to compute their payoff.
As the result of probabilistic program mediation, the
achieved equilibrium turns out to be a correlated equi-
librium. This is unlike other GAN formulations, where
the harder problem of reaching Nash equilibrium is of
interest.

The adversary ’s goal is to maximize its payoff:

VDφ = E
x∼ F(y)

PPL as correlation device

[logD(y,x;φ)]

+ E
x∼G(y;θ)

[log(1−D(y,x;φ))]

Generator’s payoff is defined as expected end payoff
formulated in Eq. 3, similar to [5].

VGθ = −
∑
i

G(y,x<i; θ)Q
FGθ
Dφ

(s = x<i, a = xi) (3)

where QF
Gθ

Dφ
(x<i, a) is the reward function for taking

compilation action a, and then following the inferred
execution trace F(y) with Gθ as its proposal distribu-
tion:

QF
Gθ

Dφ
(s = x<i, a = xi) = (4){

D(y,x;φ),x ∼ FGθ if i < N
D(y,x;φ) else

In other words, the generator G takes into account the
future outcome of branching off to a new execution
trace. However, the adversary D only provides a payoff
value for the finished execution trace. This introduces
subjectivity 2 to the game. We refer to this inference
strategy as adversarial compilation since it transforms
the form of a probabilistic program into an adversarial
neural network specification language.

2Subjectivity originates from either disagreement of play-
ers over probabilities of outcomes or the recommendation
of the correlation device.

Proposition 1 [4] There may exist mutually advanta-
geous equilibrium points for a 2-person minimax game,
if we permit both correlation and subjectivity.

As a result of proposition 1, the amortized inference can
generate samples that come even closer than minimum
JD to the inferred execution trace by probabilistic
program.

Theoretical comparison between amortized inference
strategy of [2] and ours is not easy. This is because
[2] minimizes the KL distance, whereas we formulate a
minimax search for minimum JD distance. However,
we would like to reiterate that, unlike [2], our proposed
amortized inference strategy is not limited by fully-
factored representational formats.

Future works include extending the game theoretical
framework to the case, where guidance programs not
only interact with each other through a minimax game,
but also can affect the random choices made by the in-
ference engine of PPL. This could improve the efficiency
of MC strategies.
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