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1 Introduction
Differential privacy (DP) [3] is a definition of data pri-
vacy that guarantee strong privacy against database at-
tacks using background-knowledge. This privacy has at-
tracted the attention of several academic and people in
the industry. Differential privacy restricts the range of
privacy loss random variables for any two “adjacent”
datasets differing in at most one data record. Rényi dif-
ferential privacy (RDP) [8] and zero-concentrated differ-
ential privacy (zCDP) [2] are relaxed notion of differen-
tial privacy constraining the moment of the privacy loss
random variable. These relaxations can be good defini-
tions of data privacy of machine learning mechanisms
such as privacy-preserving mechanisms for Bayesian in-
ference [4].
This work is motivated to verify such all privacy-

preserving mechanisms. Since distribution of datasets
may be continuous, we also want to verify continuous
probabilistic programs.

We give semantic models for reasoning about RDP
and zCDP by extending fpRHL [1] to suppport more
general statistical divergences of both discrete and con-
tinuous distributions. Furthermore, our extended seman-
tic models can be used not only for reasoning about dif-
ferential privacy but also developing more general ap-
proximate logical relations reasoning about the proba-
bilistic behavior of continuous probabilistic programs.

2 Problems
To extend the semantic model of fpRHL, we face the
following two technical difficulties: first, we need a frame-
work that supports more general divergences than f -
divergences, although there is a framework for reasoning
about f -divergences [1]. RDP and zCDP can be defined
by the α-Rényi divergence [9], which is the logarithm
of a f -divergence. Strictly, it is not formulated as a f -
divergences. In particular, when we characterize zCDP
by statistical divergences, it can return negative values.

Second, we also aim to give a semantic model for con-
tinuous programming languages. In the previous work [10],
we have a “witness-free lifting” for approximate DP
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supporting the continuous case, but the approach in
the previous work [10] does not work well for RDP
and zCDP. Our previous approach in [10] is based on
a method to give categorical monad lifting, named co-
density lifting [5]. Roughly speaking, codensity lifting is
defined as a large intersection indexed by all relation-
preserving maps from a given relation to fixed relations.
Fortunately, in the case of approximate differential pri-
vacy, we simplify such large intersections [10]. However,
we could not simplify such large intersections for other
statistical divergences.

Summarizing the above, we have the following two
technical difficulties on semantics framework:

1. We need semantics models which support more
general statistical divergences beyond f -divergences.

2. We need it to support continuous distributions,
but our previous approach of witness-free lifting
in [10] does not work well.

3 Solutions
To solve the first technical difficulty, we first relax the
notion of divergences to sub-probability distributions
(subdistributions). Actually, we begin with just func-
tions of the form

∆X : Dist(X)×Dist(X)→ R ∪ {−∞,+∞}

where Dist(X) is the set of subdistributions onX. Then,
we axiomatize some basic properties of divergences in-
spired from the composability, additivity, and continuity
of f -divergences discussed in [1, 7].
To solve the second technical difficulty, we extend the

notion of “2-witness lifting” introduced in [1] to a novel
notion of span-lifting. It is difficult to extend 2-witness
lifting to the continuous case directly (in the previous
work [10], the author took a different way).

Technically, 2-witness lifting extends a binary relation
R ⊆ X × Y to a binary relation R♯DP(ε,δ) ⊆ Dist(X)×
Dist(Y ) of subdistributions:

µ1R
♯DP(ε,δ)µ2 ⇐⇒ ∃µL, µR ∈ Dist(R).

µ1 = π1(µL), π2(µR) = µ2

∆DP(ε)(µL, µR) ≤ δ
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where ∆DP(ε) is an f -divergence describing approximate
DP [1] (we can replace it to other divergences), and
πi(µ) is the i-th marginal of µ.
In the relation R♯DP(ε,δ), two subdistributions µ1, µ2

are related by the existence of witness µL, µR. It is a
problematic to extend to the continuous case because
the recovering µL, µR from the membership (µ1, µ2) ∈
R♯DP(ε,δ) is restricted in the continuous case.
For example, we consider a relation-preserving map

(f, g) : S → R♯DP(ε,δ), that is, two functions f, g such
that (f(x), g(y)) ∈ R♯DP(ε,δ) whenever (x, y) ∈ S. In
the discrete case, it is no problem to take a mapping
(x, y) 7→ (µL, µR) by the axiom of choice. However, in
the continuous case, it is problematic that such mapping
needs to be a measurable function while the axiom of
choice does not guarantee measurability.

This problem is hard to solve, but easy to avoid. It
suffices to enrich the structure of 2-witness liftings to
make precise witness distributions. In short, we consider
the following 4-ary relations instead of binary relations:

(µ1, µ2, µL, µR) ∈ R♯DP(ε,δ)

⇐⇒ µ1 = π1(µL), π2(µR) = µ2,∆
DP(ε)(µL, µR) ≤ δ.

This modification is not problematic to give a seman-
tic model of probabilistic language. First, in many prac-
tical cases, measurable functions (x, y) 7→ (µL, µR) are
almost obviously given. Second, thanks to the axiom
of choice, this modification covers all the discrete case
discussed in [1].

3.1 construction

Based on the above ideas, we extend the notion of di-
vergences, and introduce a novel notion of span-liftings
for general divergences. Instead of 4-ary relations we use

spans X
h←− Φ

k−→ Y in the category Meas of measur-
able spaces and measurable functions. We then relate
basic properties of divergences to semantical properties
of span-liftings for the divergences. The span-liftings for
divergences form a graded monad [6], which gives main
structures for formal verifications when the divergences
satisfy some basic properties. Finally, we check basic
properties of divergences for RDP, zCDP, and approxi-
mate DP, and apply them to our framework.

To sum up, in this study, we extend the semantic
model of fpRHL to support general divergences in both
the discrete and continuous case, and instantiate it for
RDP, zCDP and approximate DP as follows:

1. We introduce general notions of divergences, and
axiomatize the basic properties as in [1, 7].

2. We introduce a novel notion of span-lifting for gen-
eral divergences to support both discrete and con-
tinuous case. Then, we relate basic properties of
divergences and span-liftings for the divergences.

3. We instantiate this framework for RDP, zCDP,
and approximate DP by checking basic properties
of divergences.
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